Indoor Climate and Adaptive Thermal Comfort

Comfortable and energy efficient buildings

References

Alders, N. (2016). Adaptive thermal comfort opportunities for dwellings. A+ BE| Architecture and the Built Environment, (13), 1-336.

Alfano, F. R. D. A., Palella, B. I., & Riccio, G. (2011). The role of measurement accuracy on the thermal environment assessment by means of PMV index. Building and Environment, 46(7), 1361-1369.

Almeida, R. M., Ramos, N. M., & de Freitas, V. P. (2016). Thermal comfort models and pupils’ perception in free running school buildings of a mild climate country. Energy and Buildings, 111, 64-75.

Altomonte, S., Schiavon, S., Kent, M. G., & Brager, G. (2019). Indoor environmental quality and occupant satisfaction in green-certified buildings. Building Research & Information, 47(3), 255-274.

Arakawa Martins L., Williamson T, Bennetts H., Zuo J., Visvanathan R., Hansen A., Pisaniello D., Van Hoof J., SoebartoV. (2020) Individualising thermal comfort models for older people: the effects of personal characteristics on comfort and wellbeing, Windsor Conference 2020.

Arens, E., Turner, S., Zang, H., Paliaga, G. (2009), “Moving Air for Comfort”, in ASHRAE Journal, May 2009, pp 8-18.

Arens, E., Humphreys, M. A., de Dear, R., & Zhang, H. (2010). Are ‘category A’ temperature requirements realistic or desirable? Building and Environment, 45(1), 4-10.

ASHRAE Handbook (2016) HVAC Systems and Equipment (SI), Chapter 22, Humidifiers.

ASHRAE standard 55-2017: Thermal Environmental Conditions for Human Occupancy, ASHRAE. ISSN 1041-2336.

Asikanen V., Pasanen A.L., Pasanen P. (2006). The microbial contamination on the drip pans of the fan coils, Proceedings Healthy Buildings (2) 393 – 396.

Aynsley, R. (2012). “How much do you need to know to effectively utilise large ceiling fans?” Architectural Science Review 55 (2), 16-25.

Baker, N., (2004). Human nature, in Steane, M. A., & Steemers, K. (2004). Environmental diversity in architecture. Routledge.

Bakó-Biró Z., (2000). Human perception, SBS symptoms and performance of office work during exposure to air polluted by building materials and personal computers, Ph.D. Thesis, Technical University Denmark, 2000.

Bedford, T. (1936). The Warmth Factor in Comfort at Work. A Physiological Study of Heating and Ventilation. The Warmth Factor in Comfort at Work. A Physiological Study of Heating and Ventilation., (76).

Blatteis, C. M. (2012). Age-dependent changes in temperature regulation–a mini review. Gerontology, 58(4), 289-295.

Bluyssen Ph.M., de Oliveira Fernandes E., Fanger P.O., Groes L., Clausen G., Roulet C.A., Bernhard C.A., Valbjorn O. (1995). European Audit Project to Optimise Indoor Air Quality and Energy Consumption in Office Buildings - Final Report. TNO-Building and Construction Research, The Netherlands.

Bluyssen, P. M. (2009). The indoor environment handbook: how to make buildings healthy and comfortable. Routledge, ISBN 9781138989450.

Bluyssen, P. M. (2013). The healthy indoor environment: How to assess occupants' wellbeing in buildings. Routledge. ISBN 9780415822756.

Bluyssen, P. M., Zhang, D., Kurvers, S., Overtoom, M., & Ortiz-Sanchez, M. (2018). Self-reported health and comfort of school children in 54 classrooms of 21 Dutch school buildings. Building and environment, 138, 106-123.

Boerstra, A. (2010). Personal control in future thermal comfort standards. Adapting to Change: New Thinking on Comfort, Windsor, UK.

Boerstra, A. C., Loomans, M. G., & Hensen, J. L. (2013). Personal control over temperature in winter in Dutch office buildings. HVAC&R Research, 19(8), 1033-1050.

Boerstra, A. C., te Kulve, M., Toftum, J., Loomans, M. G., Olesen, B. W., & Hensen, J. L. (2015). Comfort and performance impact of personal control over thermal environment in summer: Results from a laboratory study. Building and Environment, 87, 315-326.

Boerstra, A. C. (2016). Personal control over indoor climate in offices: impact on comfort, health and productivity. Eindhoven: Technische Universiteit Eindhoven.

Borgeson, S., & Brager, G. (2008). Occupant control of windows: Accounting for human behavior in building simulation. University of California, Berkeley.

Borgeson, S., Brager, G., (2011) Comfort Standards and variations in exeedance for mixed-mode buildings, Building Research & Information 39 (2), pp. 118-133.

Brager G., Paliaga G., de Dear R., (2004), Operable windows, Personal Control and Occupant Comfort. ASHRAE Transactions 4695, RP-1161.

Brager, G. & Baker, L. (2008). Occupant Satisfaction in Mixed-Mode Buildings, Proceedings of Conference: Air Conditioning and the Low Carbon Cooling Challenge, Cumberland Lodge, Windsor, UK, 27-29 July 2008. London: Network for Comfort and Energy Use in Buildings, http://nceub.org.uk.

BREEAM-NL - Nieuwbouw en Renovatie (2014) versie 2, Keurmerk voor duurzame vastgoedobjecten, Beoordelingsrichtlijn 2014, versie 2, 16 februari 2017, Dutch Green Building Council.

Bronsema, B. (2013) Earth, Wind & Fire – Natuurlijke Airconditioning, Proefschrift TU Delft, ISBN 978 90 5972 762 5, Uitgeverij Eburon.

Brouwers, G.F.M., Van der Linden, A.C., (1989). Beoordeling van het thermische binnenklimaat, Verwarming en Ventilatie, juli 1989, nr. 7, pp 571-578.

Brüel & Kjær Technical Review, no.2 (1988), Quantifying draught risk.

Bruggen van, M. (2016) Hybride ventilatie, definitie en uitgangspunten, TVVL Magazine 11, 2016.

Burge, P. S. (2004). Sick building syndrome. Occupational and environmental medicine, 61(2), 185-190.

Byrd R., (1996). Prevalence of microbial growth in cooling coils of commercial air-conditioning systems, Proceedings Indoor Air, 3202 – 3207.

Cândido, C., De Dear, R. J., Lamberts, R., & Bittencourt, L. (2010). Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone. Building and Environment, 45(1), 222-229.

Carlson, N. R. (2010). Psychology, the science of behavior. Pearson Canada. p. 409. ISBN 978-0-205-69918-6.

Carlucci, S., Bai, L., de Dear, R., & Yang, L. (2018). Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment.

Carslaw, N., & Weschler, C. J. (2018). Indoor Chemistry. Environmental Science and Technology, 2419-2428.

CBS (2019). More deaths during recent heat wave, www.CBS.nl.

CEN CR1752 (1998). Ventilation for buildings – Design criteria for the indoor environment, European Committee for Standardisation.

Centre for People & Buildings (2017). https://www.cfpb.nl/instrumenten/cfpb-benchmark/.

Chappells, H., & Shove, E. (2003). An annotated bibliography of comfort research. Energy and Buildings, 23, 175-182.

Cheung, T., Schiavon, S., Parkinson, T., Li, P., & Brager, G. (2019). Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 153, 205-217.

CIBSE TM52 (2013). The limits of thermal comfort: avoiding overheating in European buildings, The Chartered Institution of Building Services Engineers, ISBN 978-1-906846-34-3.

Clausen G., Wyon D.W. (2006). The combined effects of many different indoor environmental factors on acceptability and office work performance, Proceedings Indoor Air 2005, 1.3-10.

Clausen, G., Beko, G., Corsi, R. L., Gunnarsen, L., Nazaroff, W. W., Olesen, B. W., ... & Weschler, C. J. (2011). Commemorating 20 years of indoor air, reflections on the state of research: indoor environmental quality. Indoor Air, 21, 219-230.

Cohen, S., & Weinstein, N. (1982). Nonauditory effects of noise on behavior and health. Environmental stress, 45-74.

Comite 'Europe' en de Normalisation, CE.N. (2007). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251.

Danielsson, C. B., & Bodin, L. (2009). Difference in satisfaction with office environment among employees in different office types. Journal of Architectural and Planning Research, 241-257.

Day, R. (2015). Low carbon thermal technologies in an ageing society–What are the issues? Energy Policy, 84, 250-256.

Day, J. K., & Gunderson, D. E. (2015). Understanding high performance buildings: The link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction. Building and Environment, 84, 114-124.

de Dear, R., Brager, G., & Cooper, D. (1997). Developing an Adaptive Model of Thermal Comfort and Preference: Final Report on RP-884. ASHRAE Trans, 104.

de Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference.

de Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and buildings, 34(6), 549-561.

de Dear, R. (2004). Thermal comfort in practice. Indoor air, 14(s 7), 32-39.

de Dear, R. D. (2009). The theory of thermal comfort in naturally ventilated indoor environments- “the pleasure principle”. International Journal of Ventilation, 8(3), 243-250.

de Dear, R. (2010). Thermal comfort in natural ventilation—a neurophysiological hypothesis. In 2010 Windsor Conference: Adapting to Change: New Thinking on Comfort (Vol. 6).

de Dear, R. (2011). Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research & Information, 39(2), 108-117

de Dear, R. J., Akimoto, T., Arens, E. A., Brager, G., Candido, C., Cheong, K. W. D., ... & Toftum, J. (2013). Progress in thermal comfort research over the last twenty years. Indoor air, 23(6), 442-461.

de Dear, R., Kim, J., Candido, C., & Deuble, M. (2014). Summertime Thermal Comfort in Australian School Classrooms. Counting the Cost of Comfort in a changing world, 10-13.

de Dear, R., Kim, J., Candido, C., & Deuble, M. (2015). Adaptive thermal comfort in Australian school classrooms. Building Research & Information, 43(3), 383-398.

Deuble, M. P., & de Dear, R. J. (2012). Mixed-mode buildings: A double standard in occupants’ comfort expectations. Building and Environment, 54, 53-60.

Diniz, F. R., Gonçalves, F. L. T., & Sheridan, S. (2020). Heat Wave and Elderly Mortality: Historical Analysis and Future Projection for Metropolitan Region of São Paulo, Brazil. Atmosphere, 11(9), 933.

Djamila, H., C.C. Ming and S. Kumaresan. (2014). “Exploring the Dynamic Aspect of Natural Air flow on Occupants Thermal Perception and Comfort.” Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a changing world, Windsor, UK, 10-13 April 2014. London: Network for Comfort and Energy Use in Buildings.

Doherty, T., & Arens, E. A. (1988). Evaluation of the physiological bases of thermal comfort models. ASHRAE transactions, 94.

Engel van den, P. J. W. (1995). Thermisch comfort en ventilatie-efficiency door inducerende ventilatie via de gevel, Proefschrift TU Delft, ISBN 90-5269-188-6.

Engel van den, P. J., & Kurvers, S. R. (2017). The scope of inducing natural air supply via the façade. Architectural Science Review, 60(3), 215-224.

Fang L. Wyon D.P. Clausen G. Fanger P.O. (2004). Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air Journal 2004; 14 (Suppl 7): 74-81.

Fanger, P.O., N.K. Christensen. (1986). “Perception of draught in ventilated spaces.” Ergonomics, 29 (2), 215-253.

Fanger P.O., A.K. Melikov, H. Hanzawa, J. Ring. (1988). “Air turbulence and sensation of draught.” Energy and Buildings 12 (1), 21-39.

Fanger, P.O. (1970). Thermal comfort – Analyses and Application in Environmental Engineering, McGraw-Hill, New York, ISBN0-07-019915-9.

Fernández, G., & Fernández-Galiano, L. (2000). Fire and memory: On architecture and energy. Mit Press.

Földváry Ličina, V. F., Cheung, T., Zhang, H., De Dear, R., Parkinson, T., Arens, E., ... & Li, P. (2018). Development of the ASHRAE global thermal comfort database II. Building and Environment, 142, 502-512.

Folkerts, M. A., Gerrett, N., Kingma, B. R. M., Zuurbier, M., & Daanen, H. A. (2020). Care provider assessment of thermal state of children in day-care centers. Building and Environment, 179, 106915.

Gagge, A.P., Stolwijk, J. A. J., Nishi, Y. (1970). “An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response”, ASHRAE Trans., Vol.70, Pt 1.

Gagge, AP, Fobelets, AP, Berglund, LG (1986). “A standard predictive index of human response to the thermal environment”. ASHRAE Trans. (2nd ed.). 92: 709–31.

Haapakangas, A., Helenius, R., Keskinen, E., & Hongisto, V. (2008). Perceived acoustic environment, work performance and well-being–survey results from Finnish offices. In 9th International congress on noise as a public health problem (ICBEN) (Vol. 18, No. 8, pp. 21-25).

Ham, E.R. van den, Nobel, K.C.J. (2009). Schatgraven in de bestaande gebouwenvoorraad, Pilot kantoren en scholen, Climatic Design Consult 1002.32, Novem.

Handboek Bouwfysische Kwaliteit Gebouwen (2018), Versie 2.30, Nederlands Vlaamse Bouwfysica Vereniging.

Healy, S. (2008). Air-conditioning and the ‘homogenization’ of people and built environments. Building Research & Information, 36(4), 312-322.

Heinzerling, D., Schiavon, S., Webster, T., & Arens, E. (2013). Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Building and environment, 70, 210-222.

Hellwig, R.T. (2017) Perceived importance of indoor environmental factors in different contexts, Proceedings of 33rd PLEA International Conference. Design to Thrive Edinburgh, 2th-5th July 2017.

Hellwig, R.T. (2018): Revisiting overheating indoors. Proceedings of 10th Windsor Conference: Rethinking Comfort. Cumberland Lodge, Windsor, UK, 12-15 April 2018. London: Network for Comfort and Energy Use in Buildings.

Hellwig, R. T., Despoina, T., Schweiker, M., Choi, J. H., Lee, J. M., Mora, R., ... & Al-Atrash, F. (2020). Guideline to bridge the gap between adaptive thermal comfort theory and building design and operation practice. In Windsor Conference 2020 (pp. 529-545).

Henshaw, V., & Guy, S. (2015). Embodied thermal environments: an examination of older-people's sensory experiences in a variety of residential types. Energy Policy, 84, 233-240.

Hoof, van, J., Kort, H. S., Hensen, J. L. M., Duijnstee, M. S. H., & Rutten, P. G. S. (2010). Thermal comfort and the integrated design of homes for older people with dementia. Building and Environment, 45(2), 358-370.

Hoyt, T., H. Zhang, E. Arens. (2009). “Draft or Breeze? Preferences for air movement in office buildings and schools from the ASHRAE database.” Proceedings of Healthy Buildings, September 13-17, Syracuse, NY.

Huang, L., Q. Ouyang and Y. Zhu. (2012). “Perceptible airflow fluctuation frequency and human thermal response.” Building and Environment 54, 14-19.

Huang, L., Q. Ouyang, Y. Zhu and L. Jiang. (2013). “A study about the demand for air movement in warm environment.” Building and Environment 61, 27-33.

Huber, M., Knottnerus, J. A., Green, L., van der Horst, H., Jadad, A. R., Kromhout, D., ... & Schnabel, P. (2011). How should we define health? Bmj, 343, d4163.

Huber, M., Van Vliet, M. V., & Boers, I. (2016). Heroverweeg uw opvatting van het begrip ‘gezondheid’. Nederlands Tijdschrift voor Geneeskunde, 160(8), A7720.

Huizenga, C., Hui, Z., & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 36(6), 691-699.

Humphreys M.A. (1975). Field studies of thermal comfort compared and applied. Journal of Institution of Heating and Ventilation Engineer 44, pp.5–27.

Humphreys, M. A. (1977). A study of the thermal comfort of primary school children in summer. Building and environment, 12(4), 231-239.

Humphreys, M. A., & Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and buildings, 34(6), 667-684.

Humphreys, M. A., Rijal, H. B., & Nicol, J. F. (2013). Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and environment, 63, 40-55.

Humphreys, M.A, Nicol, J.F. (2018). Puzzles and paradoxes in adaptive thermal comfort, Proceedings of Conference Adapting to Change: New thinking on Comfort, Cumberland Lodge, Windsor, UK, pp. 9-19, London, Network for Comfort and Energy Use in Buildings.

Humphreys, M.A, Rijal, H.B., Nicol, J.F. (2010). Examining and developing the adaptive relation between climate and thermal comfort indoors, Proceedings of Conference Adapting to Change: New thinking on Comfort, Cumberland Lodge, Windsor, UK, pp. 9-1, London, Network for Comfort and Energy Use in Buildings.

Humphreys, M.A., Nicol, J.F., Roaf, S. (2016). Adaptive Thermal Comfort: Foundations and Analysis, Routledge, ISBN-13: 978-041569161, ISBN-10: 0415691613.

Ioannou, A., & Itard, L. (2017). In-situ and real time measurements of thermal comfort and its determinants in thirty residential dwellings in the Netherlands. Energy and Buildings, 139, 487-505.

Jensen, K.L. (2008) Development of a model to calculate the economic implications of improving indoor climate. Ph.D. Thesis, Technische Universiteit Denemarken.

Jensen, K. L., Toftum, J., & Friis-Hansen, P. (2009). A Bayesian Network approach to the evaluation of building design and its consequences for employee performance and operational costs. Building and Environment, 44(3), 456-462.

Kaarlela-Tuomaala, A., Helenius, R., Keskinen, E., & Hongisto, V. (2009). Effects of acoustic environment on work in private office rooms and open-plan offices–longitudinal study during relocation. Ergonomics, 52(11), 1423-1444.

Kang, K., D. Song and S. Shiavon. (2013). “Correlations in Thermal Comfort and Natural Wind.” Journal of Thermal Biology 38, 419-426.

Karjalainen, S. (2012). Thermal comfort and gender: a literature review. Indoor air, 22(2), 96-109.

Karmann, C., Schiavon, S., Arens, E. (2018). Percentage of commercial buildings showing at least 80% satisfied with their thermal comfort”, Proceedings of Conference Adapting to Change: New thinking on Comfort, Cumberland Lodge, Windsor, UK, London, Network for Comfort and Energy Use in Buildings.

Kim, J., & de Dear, R. (2012). Impact of different building ventilation modes on occupant expectations of the main IEQ factors. Building and Environment, 57, 184-193.

Kim, J., & De Dear, R. (2013). Workspace satisfaction: The privacy-communication trade-off in open-plan offices. Journal of Environmental Psychology, 36, 18-26.

Kim, J., & de Dear, R. (2018). Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 127, 13-22.

Kingma, B. R. M., Schellen, L., Frijns, A. J. H., & van Marken Lichtenbelt, W. D. (2012). Thermal sensation: a mathematical model based on neurophysiology. Indoor air, 22(3), 253-262.

Kingma, B., Frijns, A., & van Marken Lichtenbelt, W. (2012). The thermoneutral zone: implications for metabolic studies. Frontiers in bioscience (Elite edition), 4, 1975-1985.

Kingma, B. R., Frijns, A. J., Schellen, L., & van Marken Lichtenbelt, W. D. (2014). Beyond the classic thermoneutral zone: including thermal comfort. Temperature, 1(2), 142-149.

Klitzman, S., & Stellman, J. M. (1989). The impact of the physical environment on the psychological well-being of office workers. Social Science & Medicine, 29(6), 733-742.

Korsavi, S. S., & Montazami, A. (2020). Children's thermal comfort and adaptive behaviours; UK primary schools during non-heating and heating seasons. Energy and Buildings, 214, 109857.

Kulve te, M., Schlangen, L., & Lichtenbelt, W. V. M. (2018). Interactions between the perception of light and temperature. Indoor Air, 28(6), 881-891.

Kulve te, M., Hellwig, R. T., van Dijken, F., & Boerstra, A. (2020). What about children? Implications from their subjective perception and the risk of overheating in schools. In Windsor Conference 2020 (pp. 216-223).

Kumar, S., Mathur, J., Mathur, S., Singh, M. K., & Loftness, V. (2016). An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Building and Environment, 109, 135-153.

Kurvers, S.R. (1986). De geldigheid van comfortindices. Studierapport Hogere Veiligheidskunde, NIA/TNO.

Kurvers, S. R., Leyten, J. L. (1992). Vragenlijst voor Building in Use onderzoek, Facility Management Magazine, september 1990.

Kurvers, S.R., Van der Linden, A.C., Boerstra, A.C. (2002) Individuele beïnvloeding: lager energiegebruik, gezonder, comfortabeler en productiever binnenmilieu. TVVL Magazine, maart 2002, 31, 3.

Kurvers, S.R., Raue, A.K., Alders, E.E., Leyten, J.L. (2011), Literatuuronderzoek naar een optimaal binnenmilieu, Rijksdienst voor Ondernemend Nederland, RVO-172-1501/RP-DUZA.

Kurvers, S. R., van den Ham, E. R., Leyten, J. L., & Juricic, S. (2012). Energie-efficiëntie en gebruikerscomfort verenigd. TVVL Magazine, 41(12), 8.

Kurvers, S. R., Raue, A. K., Van den Ham, E. R., Leyten, J. L., & Juricic, S. M. M. (2013). Robust climate design combines energy efficiency with occupant health and comfort. ASHRAE IAQ 2013 Proceedings: Environmental Health in Low Energy Buildings, Vancouver, Canada, 15-18 October 2013.

Lan, L., Wargocki, P., & Lian, Z. (2011). Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, 43(5), 1057-1062.

Lan, L., & Lian, Z. (2016). Ten questions concerning thermal environment and sleep quality. Building and Environment, 99, 252-259.

Leaman, A., & Bordass, B. (1999). Productivity in buildings: the ‘killer’variables. Building Research & Information, 27(1), 4-19.

Leaman, A. and Bordass, B. (2001), ”Assessing building performance in use 4: the Probe occupant surveys and their implications”, Building Research and Information, Vol. 29 No. 2, special issue: Post-occupancy evaluation, pp. 129-43.

Lechner, N. (2014), Heating, Cooling, Lighting - Sustainable Design Methods for Architects (4th ed.), Wiley, ISBN: 9781118821725.

Leezenberg en De Vries (2003). Wetenschapsfilosofie voor de geesteswetenschappen, Amsterdam University Press, derde gecorrigeerde druk.

Leyten, J.L., Tan, J.H. (2002). Arboadvisering bij nieuwe huisvesting - Nieuwbouw, renovatie en huren, Praktijkgids Arbeidshygiëne, ISBN 90 14 08925 2, Kluwer.

Leyten, J.L. (2006). 20 jaar veldonderzoek in kantoorgebouwen, Facility Management Magazine, Jaarboek 2006.

Leyten, J. L., & Kurvers, S. R. (2006). Robustness of buildings and HVAC systems as a hypothetical construct explaining differences in building related health and comfort symptoms and complaint rates. Energy and Buildings, 38(6), 701-707.

Leyten J.L., Kurvers S.R., (2007). Robuustheid van gebouwen en luchtbehandelingsinstallaties – Gebouwgerelateerde gezondheidssymptomen en comfortklachten, TVVL Magazine 1/2007, 20-27.

Leyten, JL., Kurvers, SR., & van den Eijnde, JHGM. (2009). Robustness of office buildings and the enviromental gestalt. In S. Santanam, EA. Bogucz, JS. Zhang, & H. Ezzat Khalifa (Eds.), Proceedings of the Ninth International Healthy Buildings Conference, Syracuse, NY, USA (pp. 1-4). International Society of Indoor Air Quality and Climate - ISLAQ.

Leyten J.L., Kurvers S.R. (2011). Robuustheid van gebouwen en installaties, deel 2, TVVL Magazine, 3-2011.

Leyten, J.L., Raue, A.K., Kurvers, S.R. (2014), Robust Design for high workers’ performance and low absenteeism. An alternative approach, Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a changing world. Windsor, UK, 10-13 April 2014. London: Network for Comfort and Energy Use in Buildings.

Li, P., Parkinson, T., Brager, G., Schiavon, S., Cheung, T. C., & Froese, T. (2019). A data-driven approach to defining acceptable temperature ranges in buildings. Building and Environment, 153, 302-312.

Lipczynska, A., Schiavon, S., & Graham, L. T. (2018). Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, 135, 202-212.

Looman, R. (2017). Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design. A+ BE| Architecture and the Built Environment, (1), 1-282.

Lundgren-Kownacki, K., Hornyanszky, E. D., Chu, T. A., Olsson, J. A., & Becker, P. (2018). Challenges of using air conditioning in an increasingly hot climate. International journal of biometeorology, 62(3), 401–412. doi:10.1007/s00484-017-1493-z

Madsen, T.L. (1984). “Why low air velocities may cause thermal discomfort.” Proceedings of Indoor Air, Stockholm.

Mangone, G., Kurvers, S. R., & Luscuere, P. G. (2014). Constructing thermal comfort: Investigating the effect of vegetation on indoor thermal comfort through a four-season thermal comfort quasi-experiment. Building and Environment, 81, 410-426.

Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & De Dear, R. (2016). Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, 98, 55-70.

Marino, C., Nucara, A., & Pietrafesa, M. (2012). Proposal of comfort classification indexes suitable for both single environments and whole buildings. Building and Environment, 57, 58-67.

Marken Lichtenbelt van, W., Hanssen, M., Pallubinsky, H. (2016) Healthy Excurtions Outside the Comfort Zone, Proceedings of 9th Windsor Conference: Making Comfort Relevant, Cumberland Lodge, Windsor, UK.

Marken Lichtenbelt van, W., Hanssen, M., Pallubinsky, H., Kingma, B., & Schellen, L. (2017). Healthy excursions outside the thermal comfort zone. Building Research & Information, 45(7), 819-827.

Martins, L. A., Williamson, T., Bennetts, H., Zuo, J., Visvanathan, R., Hansen, A., ... & Soebarto, V. (2020) Individualising thermal comfort models for older people: the effects of personal characteristics on comfort and wellbeing In Windsor Conference 2020

Matsumoto, H., Fukui, K., & Doi, K. (2012). Effects of Foliage Plants on Office Workers of Physiological/Psychological Response and Productivity in Buildings. Healthy Buildings 2012.

McCartney, K. J., & Nicol, J. F. (2002). Developing an adaptive control algorithm for Europe. Energy and buildings, 34(6), 623-635.

McIntyre, D. A. (1980). Indoor climate. Elsevier, ISBN 0-85334-868-5.

Melikov, A. K., & Kaczmarczyk, J. (2012). Air movement and perceived air quality. Building and Environment, 47, 400-409.

Mendell M.J., Smith A.H., (1990) Consistent pattern of elevated symptoms in airconditioned office buildings: A reanalysis of epidemiologic studies, American Journal of Public Health 80 (10) 1193–1199.

Mendell, M. (2009). Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study.

Menzies D., Popa J., Hanley J.A., Rand T., Milton D.K. (2003). Effect of ultraviolet germicidal lights installed in office ventilation system on worker’s health and well-being: double blind multiple crossover study, The Lancet 362 (2003) 1785 – 1791.

Montazami, A., & Nicol, F. (2013). Overheating in schools: comparing existing and new guidelines. Building research & information, 41(3), 317-329.

Mors, ter, S., Hensen, J. L., Loomans, M. G., & Boerstra, A. C. (2011). Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, 46(12), 2454-2461.

Nagai, M., Hoshide, S., & Kario, K. (2010). Sleep duration as a risk factor for cardiovascular disease-a review of the recent literature. Current cardiology reviews, 6(1), 54-61.

Nakano. J., Tanabe S. (2003a). Thermal comfort conditions in semi-outdoor environments for short-term Occupancy, Proceedings of Healthy Buildings 2003, Vol 2, 755 - 760.

Nakano, J., Tanabe, S (2003b). Behavioural adaptation in semi-outdoor environment, Proceedings of Healthy Buildings 2003, Vol 2, 815 - 821.

Ncube, M., & Riffat, S. (2012). Developing an indoor environment quality tool for assessment of mechanically ventilated office buildings in the UK–A preliminary study. Building and Environment, 53, 26-33.

Nemecek, J. (1980). Bürolärm und seine Auswirkungen auf den Menschen (Doctoral dissertation, ETH Zurich).

EN-ISO 7730 (2005). Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, NEN 2005.

EN-ISO 7243 (2017). Ergonomics of the thermal environment - Assessment of heat stress using the WBGT (wet bulb globe temperature) index, NEN 2017.

EN 16798-1 (2019). Energy performance of buildings - Ventilation for buildings - Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics - Module M1-6, NEN 2019.

Nicol, J. F., & Humphreys, M. A. (1973). Thermal comfort as part of a self-regulating system, Building Research and Practice (J CIB) 6 (3) pp191–197.

Nicol F., & McCartney K., 2000, SMART CONTROLS AND THERMAL COMFORT PROJECT, Oxford Brookes University, Contract JOE3-CT97-0066, FINAL REPORT, Non-Nuclear Energy Programme JOULE III.

Nicol, F. (2004). Adaptive thermal comfort standards in the hot–humid tropics. Energy and buildings, 36(7), 628-637.

Nicol, F., & Humphreys, M. (2005). Adaptive comfort in Europe: results from the SCATs survey with special reference to free running buildings. Proceedings of the international conference on EPBD Energy Performance of Buildings Directive: Implementation in practice, Session 4.5. - pp 14.

Nicol, F.J., Hacker, J., Spires, B., Davies, H., (2009). Suggestion for new approach to overheating diagnostics, Building Research and Information 37(4), pp. 348-357, 2009.

Nicol, F., Wilson, M., (2010). “An overview of the European standard EN 15251”, in Proceedings of Conference: Adapting to Change: New Thinking on Comfort, Windsor, UK, 9-11 April 2010.

Nicol, J. F., & Wilson, M. (2011). A critique of European Standard EN 15251: strengths, weaknesses and lessons for future standards. Building Research & Information, 39(2), 183-193.

Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: principles and practice. Routledge.

Nicol, J. F. (2016). Adaptive thermal comfort in domestic buildings. Proceedings of 9th Windsor Conference: Making Comfort Relevant, Cumberland Lodge, Windsor, UK.

Nicol, J. F., & Roaf, S. (2017). Rethinking thermal comfort. Building Research & Information, 45(7), 183-193.

Nicol, F. (2019). Temperature and sleep. Energy and Buildings, 204, 109516.

Novieto, D. T., & Zhang, Y. (2010). Thermal comfort implications of the aging effect on metabolism, cardiac output and body weight. In Windsor Conference 2010 Adapting to change: new thinking on comfort, 1-9.

Olesen, B. W. (2007). The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings. Energy and Buildings, 39(7), 740-749.

Olesen, B.W. (2018) Interview to President of ASHRAE 2017-2018 Bjarne Olesen, https://www.youtube.com/watch?v=XVGCCdvlbco.

Opp, M. R. (2009). Sleeping to fuel the immune system: mammalian sleep and resistance to parasites. BMC evolutionary biology, 9(1), 1-3.

Ouyang, Q. 2006. “Study on dynamic characteristics of natural and mechanical wind in built environment using spectral analysis.” Building and Environment 41, 418-426.

Parkinson, T., de Dear, R. (2016). Thermal Pleasure and Alliesthesia in the Built environment, Proceedings of 9th Windsor Conference: Making Comfort Relevant, Cumberland Lodge, Windsor, UK.

Parkinson, T., de Dear, R. & Brager, G. (2020) Nudging the adaptive thermal comfort model. Energy and Buildings, 206, 109559.

Pejtersen J., Allerman L., Kristensen T.S., Sjostrom M., (2006). Indoor climate, psychosocial work environment and symptoms in open-plan offices, Indoor Air 16 (5) 392 – 401.

Pigman, M., Brager, G., Zang, H. (2018): Personal control: windows, fans and occupant satisfaction, Proceedings Windsor Conference-Rethinking Comfort 12th-15th April 2018.

Porras-Salazar, J. A., Schiavon, S., Wargocki, P., Cheung, T., & Tham, K. W. (2021). Meta-analysis of 35 studies examining the effect of indoor temperature on office work performance. Building and Environment, 108037.

Programma van Eisen frisse scholen (2014). Rijksdienst voor Ondernemend Nederland | november 2014 Publicatienummer: RVO-039-1401/BR-DUZA.

Programma van eisen gezonde kantoren (2018). Platform Gezond Binnenklimaat TVVL-connect.

Raftery, P., & Douglass-Jaimes, D. (2020). Ceiling Fan Design Guide.

Raw, G., (2018) What do households do to keep cool? Proceedings of 10th Windsor Conference: Rethinking Comfort. Cumberland Lodge, Windsor, UK, 12-15 April 2018. London: Network for Comfort and Energy Use in Buildings.

Reeve, A., Hargroves, C., Desha, C., & Newman, P. (2012). Informing healthy building design with biophilic urbanism design principles: a review and synthesis of current knowledge and research. Healthy Buildings 2012 - 10th International Conference of The International Society of Indoor Air Quality and Climate.

Rijal, H. B., Humphreys, M. A., & Nicol, J. F. (2009). Understanding occupant behavior: the use of controls in mixed-mode office buildings. Building Research & Information, 37(4), 381-396.

Rijal, H. B., Humphreys, M., & Nicol, F. (2015). Adaptive thermal comfort in Japanese houses during the summer season: behavioral adaptation and the effect of humidity. Buildings, 5(3), 1037-1054.

Rijal, H. B., Humphreys, M. A., & Nicol, J. F. (2018). Adaptive mechanisms for thermal comfort in Japanese dwellings. In Proceedings of the 10th Windsor Conference: Rethinking Comfort, Winsdor, UK (pp. 12-15).

Roaf S. & Nicol, J.F. (2019), Proceedings TUD/TVVL symposium “Hybrid Ventilation, a Challenge for the Future.

Roulet C.A., (2006). Indoor air quality and energy performance of buildings, Proceedings Healthy Buildings 2006 (1) 37 – 47.

Rudge, J. (2012). Coal fires, fresh air and the hardy British: A historical view of domestic energy efficiency and thermal comfort in Britain. Energy Policy, 49, 6-11.

Rupp, R. F., de Dear, R., & Ghisi, E. (2018a). Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework. Energy and Buildings, 158, 1475-1486.

Rupp, R. F., Kim, J., de Dear, R., & Ghisi, E. (2018b). Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings. Building and Environment, 135, 1-9.

RVO - Infoblad Trias Energetica en energieneutraal bouwen (2015), Rijksdienst voor Ondernemend Nederland, Publicatienummer: RVO-072-1401/FD-DUZA.

Schalkoort, T.A.J. (2009), Klimaatinstallaties – Integratie van gebouw en installaties & overige gebouwinstallaties, Faculteit Bouwkunde, Afdeling Bouwtechnologie, Sectie Climate Design, Delft University of Architecture.

Schellen, L., Timmers, S., Loomans, M. G. L. C., Nelissen, E., Hensen, J. L. M., & van Marken Lichtenbelt, W. (2012). Downdraught assessment during design: experimental and numerical evaluation of a rule of thumb. Building and Environment, 57, 290-301.

Scherder, E. (2017). Laat je hersenen niet zitten. Hoe lichaamsbeweging de hersenen jong houdt, Atheneaeum-Polak & van Gennep, ISBN 9789025307219.

Schiavon, S., Yang, B., Donner, Y., Chang, V. C., & Nazaroff, W. W. (2017). Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons. Indoor air, 27(3), 690-702.

Schweiker, M., & Wagner, A. (2016). The effect of occupancy on perceived control, neutral temperature, and behavioral patterns. Energy and Buildings, 117, 246-259.

Schweiker, M., Huebner, G. M., Kingma, B. R., Kramer, R., & Pallubinsky, H. (2018). Drivers of diversity in human thermal perception–A review for holistic comfort models. Temperature, 5(4), 308-342.

Seppänen, O, Fisk, WJ, Faulkner, D (2003), Cost benefit analysis night-time ventilative cooling. Proceedings Healthy Buildings 2003, Vol 3, pp 394-399.

Seppänen, O., Andersen, J., Boerstra, A.C., Clements-Croome, D., Fitzner, K., Hanssen, S.O. (2006) Indoor Climate and Performance in Offices – How to integrate performance in life-cycle cost analysis of building services, Rehva Guidebook No 6, ISBN978-2-9600468-5-4.

Seppänen, O., Fisk, W.J., Lei, Q.H. (2006). Effect of temperature on task performance in office environment. In: Cold Climate HVAC 2006, Proceedings of the 5th International Conference on Cold Climate - Heating, Ventilating and Air-Conditioning. Moscow, Russia, 21 – 24 May 2006, Moscow, Russia: Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply & Building Thermal Physics (ABOK).

Shibasaki, M., Okazaki, K., & Inoue, Y. (2013). Aging and thermoregulation. The Journal of Physical Fitness and Sports Medicine, 2(1), 37-47.

Shimoda, T., Noguchi, M., Nakano, J., Tanabe, S. (2003). Thermal environment and behavioural adaptation in semi-outdoor cafeteria, Proceedings of Healthy Buildings 2003, Vol 2, 822 - 827.

Short, C. (2017). The Recovery of Natural Environments in Architecture - Air, Comfort and Climate. London: Routledge.

Short, C. A. (2018). The recovery of natural environments in architecture: Delivering the recovery. Journal of Building Engineering, 15, 328-333.

Stoops, J.L. (2004). A possible connection between thermal comfort and health, Lawrence Berkeley National Laboratory, University of California, Report Number: LBNL-55134.

Sundell J, Lindvall T. (1993). Indoor air humidity and sensation of dryness as risk indicators of SBS. Indoor Air, Vol 3, pp. 382-390.

Sundstrom, E., Herbert, R. K., & Brown, D. W. (1982). Privacy and communication in an open-plan office: A case study. Environment and Behavior, 14(3), 379-392.

Taleghani, M., Tenpierik, M., Kurvers, S., & Van Den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201-215.

Tamás G., Weschler C.J., Toftum J., P.O. Fanger (2006) Influence of ozone-limonene reactions on perceived air quality, Indoor Air 16 (3) 168 – 178.

Tanabe, S. I., Haneda, M., & Nishihara, N. (2015). Workplace productivity and individual thermal satisfaction. Building and environment, 91, 42-50.

Tartarini, F., Cooper, P. & Fleming, R. (2018). Thermal Comfort for Occupants of Nursing Homes: A Field Study. In Rethinking Comfort: The Tenth Windsor Conference (pp. 720-737). Network for Comfort and Energy Use in Buildings.

Teli, D., Jentsch, M. F., & James, P. A. (2012). Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, 53, 166-182.

Teli, D., James, P. A., & Jentsch, M. F. (2013). Thermal comfort in naturally ventilated primary school classrooms. Building Research & Information, 41(3), 301-316.

Teli, D., Bourikas, L., James, P. A., & Bahaj, A. S. (2017). Thermal performance evaluation of school buildings using a children-based adaptive comfort model. Procedia environmental sciences, 38, 844-851.

Toe, D. H. C., & Kubota, T. (2013). Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot–humid climates using ASHRAE RP-884 database. Frontiers of Architectural Research, 2(3), 278-291.

Toftum, J. R., Melikov, A., Tynel, A., Bruzda, M., & Fanger, P. O. (2003). Human response to air movement—Evaluation of ASHRAE's draft criteria (RP-843). Hvac&R Research, 9(2), 187-202.

Turner, C., Frankel, M. (2008) Energy Performance of LEED® for New Construction Buildings, NBI-report for the US Green Building Council, 2008.

TVVL (2002), Handboek Installatietechniek, ISBN 9050440940.

TVVL (2017), Hybride ventilatie, Technisch rapport KT-26.

UN Environment and International Energy Agency (2017): Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report 2017.

Van der Linden, A. C., Boerstra, A. C., Raue, A. K., Kurvers, S. R., & de Dear, R. J. (2006). Adaptive Temperature Limits: A new guideline in The Netherlands: A new approach for the assessment of building performance with respect to thermal indoor climate. Energy and Buildings, 38(1), 8–17. https://doi.org/10.1016/j.enbuild.2005.02.008.

Van der Linden, A.C., Kuijpers-van Gaalen, I.M., Zeegers, A. (2016). Bouwfysica, Thieme-Meulenhof, ISBN 9789006214994.

Vellei, M, Herrera, M, Fosas, D & Natarajan, S (2017), The influence of relative humidity on adaptive thermal comfort, Building and Environment, vol. 124, pp. 171-185.

Vischer, J. C., 1989, Environmental Quality in Offices, New York, Van Nostrand Reinhold.

Vroon P.A., Kurvers S.R., Leyten J.L., de Vries R.P., Trabsky W., Vroon A.G., van der Weerd A. (1990). Psychologische aspecten van ziekmakende gebouwen, ISOR 1990, ISBN 90-5189-031-0.

Wagner A., Moosman, C., Gropp T., Gossauer E., (2006). Thermal comfort under summer climate conditions-Results from a survey in an office building in Karlsruhe, Germany, Proceedings of congress Comfort and energy use in buildings – Getting it right, Windsor.

Wargocki P., Wyon D.P., Fanger P.O., (2003). Call-centre operator performance with new and used filters at two outdoor air supply rates, Proceedings Healthy Buildings 2003 (3) 213 – 218.

Wargocki, P., Wyon, D., & Fanger, P. O. (2004). The performance and subjective responses of call-center operators with new and used supply air filters at two outdoor air supply rates. Indoor Air, 14(Suppl. 8), 7-16.

Wargocki, P., Seppänen, O., Andersson, J., Clements-Croome, D., Fitzner, K., & Hanssen, S. O. (2006). Indoor climate and productivity in offices. REHVA guidebook, 6.

Wargocki, P., Seppänen, O., Andersen, J., Boerstra, A.C., Clements-Croome, D., Fitzner, K., Hanssen, S.O., (2007). Binnenmilieu en productiviteit in kantoren, ISSO / Rehva Handleiding 901.

Wargocki, P., Porras-Salazar, J. A., & Contreras-Espinoza, S. (2019). The relationship between classroom temperature and children’s performance in school. Building and Environment, 157, 197-204.

Webb, C. G. (1959). An analysis of some observations of thermal comfort in an equatorial climate. Occupational and Environmental Medicine, 16(4), 297-310.

Weschler, C. J. (2004). Chemical reactions among indoor pollutants: what we've learned in the new millennium. Indoor air, 14(s 7), 184-194.

Whitley T.D.R., Makin P.J., Dickson D.J. (1995). Organizational and Job Factors in Sick Building Syndrome: a Critique and some Suggestions for Future Research, Proceedings Healthy Buildings (3) 1469 – 1474.

Witterseh, T., Wyon, D. P., & Clausen, G. (2004). The effects of moderate heat stress and open-plan office noise distraction on SBS symptoms and on the performance of office work. Indoor air, 14(8), 30-40.

Yan, H., Liu, Q., Zhao, W., Pang, C., Dong, M., Zhang, H., ... & Wang, L. (2020). The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Building and Environment, 177, 106898.

Yu, J., Ouyang, Q., Zhu, Y., Shen, H., Cao, G., & Cui, W. (2012). A comparison of the thermal adaptability of people accustomed to air‐conditioned environments and naturally ventilated environments. Indoor air, 22(2), 110-118.

Yun, G. Y., Steemers, K., Baker, N. (2008), “Natural ventilation in practice: linking façade design, thermal performance, occupant perception and control”, in Building Research and Information, Vol 36 (6/2008), pp. 608-624.

Yun, H., Nam, I., Kim, J., Yang, J., Lee, K., & Sohn, J. (2014). A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Building and Environment, 75, 182-189.

Zhai, Y., Arens, E., Elsworth, K., & Zhang, H. (2017). Selecting air speeds for cooling at sedentary and non-sedentary office activity levels. Building and Environment, 122, 247-257.

Zhang, H., E.A. Arens, D. Kim, E. Buchberger, F.S. Bauman, C. Huizenga. (2010). “Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system.” Building and Environment 45 (1), 29–39. Li, P., Parkinson, T., Brager, G., Schiavon, S., Cheung, T. C., & Froese, T. (2019).

Zhang, F., de Dear, R., & Hancock, P. (2019). Effects of moderate thermal environments on cognitive performance: A multidisciplinary review. Applied energy, 236, 760-777.

auteur(s)
Stanley Kurvers, Joe Leyten

publicatiedatum
2022

issued by
Stichting Kennisbank Bouwfysica / Delft Digital Press

The book is also available in a printed version.

 

about the authors

Stanley Kurvers studied civil engineering and occupational health and safety engineering and has worked at the Occupational Health Service of the Dutch Government, BBA Indoor Environment Consultancy and the Faculty of Architecture at Delft University of Technology.

Joe Leyten studied theoretical psychology and statistics and held positions at the Occupational Health Service of the Dutch Government, BBA Indoor Environment Consultancy and the Faculty of Architecture at Delft University of Technology.

Both authors have many years of experience as researchers and consultants in the field of indoor environment in office buildings, schools, hospitals and homes. Around 1980, they began to develop measurement systems for long-term monitoring of the indoor environment. Later, the authors developed methods to collect people’s subjective perceptions and link these to physical measurement data. This became known as the Building-in-Use method, with which they examined numerous buildings. They also developed guidelines and policy recommendations for, among others, the Labour Inspectorate, Ministry of Housing and Construction, the Netherlands Enterprise Agency, the European Union and ISSO. They have published in Dutch professional journals and international scientific journals and conference proceedings.

Corresponding author:  stanray@me.com