Casus: toepassing fysisch brandmodel voor een kantoorvleugel
In bijlage 1 is een plattegrond, gevelaanzicht en doorsnede van een eenvoudige kantoorvleugel weergegeven. De kantoorvleugel vormt één brandcompartiment. De langsgevels bevatten een doorgaande raamstrook, de kopgevels zijn volledig gesloten.
Voor de gesloten gevelvlakken kan de volgende opbouw, van binnen naar buiten, worden aangehouden:
- 100 mm gewapend beton binnenblad;
- 120 mm steenwolisolatie;
- 30 mm luchtspouw;
- 80 mm gewapend beton buitenblad.
Voor het glas in de raamstroom kan worden uitgegaan van thermisch isolatieglas met een warmtedoorgang van U = 2,2 W/m2K.
De trappenhuizen en natte ruimte (toiletgroepen) maken geen onderdeel uit van het brandcompartiment van de kantoorvleugel.
In bijlage 2 is een basisberekening met het fysisch brandmodel toegevoegd voor de kantoorvleugel. Hieruit kunnen zowel de invoerparameters als de resultaten worden afgelezen.
Vragen
Wat valt op bij bestudering van bijlage 2 aan de invoergegevens? Zijn deze correct?
Als U wijzigingen aan de invoer voorstelt kunnen die met behulp van het programma Ozone worden aangebracht.
Wat valt op bij bestudering van bijlage 2 aan de uitvoergegevens?
De kantoorvleugel is ingedeeld in kleine verblijfsruimten (cellenstructuur). Deze indeling wordt gerealiseerd met metal-stud scheidingswanden. De wanden hebben onbedoeld een brandwerendheid van circa 30 minuten. Dat betekent dat de brand gedurende de eerste 30 minuten mogelijk beperkt blijft tot één kantoorruimte.
Wat is de consequentie hiervan?
Het totale gebouw bestaat uit drie identieke kantoorverdiepingen. Moet het brandoverslagrisico beschouwd worden tussen de verdiepingen onderling? Waarom wel of waarom niet?
De faalkans van een bouwkundige scheidingsconstructie is relatief groot. Stel dat in dit geval bij een brand op de begane grond de bovenliggende verdiepingsvloeren bezwijken. Wat zijn dan de consequenties voor het brandvermogensscenario?
Kan deze situatie in het fysisch brandmodel worden gemodelleerd?
Indien mogelijk, pas de invoer aan met behulp van het programma Ozone.
De faalkans van een sprinklervoorziening is aanmerkelijk kleiner dan de faalkans van een bouwkundige compartimentsscheiding. Het kantoorgebouw wordt om die reden uitgerust met een sprinklernet, waarbij de spinklerkoppen in een raster van 3 x 3 meter zijn geprojecteerd. De activeringstemperatuur is 68 oC en de RTI bedraagt 135 (m.s)0,5.
Bereken met het programma detact de (maximale) activeringstijd van een sprinklerkop.
Op basis van het antwoord op vraag 2.6 kan het brandvermogensscenario worden aangepast tot een gesprinklerd brandvermogensscenario. Hoe ziet dit gesprinklerd brandvermogensscenario eruit?
Moet bij het gesprinklerde brandvermogensscenario rekening worden gehouden met brandoverslagrisico? Waarom wel of waarom niet?
Moet bij het gesprinklerde brandvermogensscenario rekening worden gehouden met een brandwerendheidseis aan de hoofddraagconstructie? Waarom wel of waarom niet?
Antwoorden
Opvallend aan de invoergegevens:
- gecombineerd 2-zone / 1-zonemodel: correct.
- pluimmodel: thomas (had ook heskestad kunnen zijn), invloed gering.
- van de gevels is alleen het binnenblad ingevoerd, de isolatielaag en het buitenblad zijn achterwege gelaten. De invloed hiervan is verwaarloosbaar vanwege de thermische traagheid van het binnenblad, dus correct.
- de openingen in de gevels worden constant open beschouwd, alsof ze vanaf het begin van de brand zijn bezweken. Dit is niet realistisch, maar sluit wel aan op NEN 6068.
- gegevens van de brand (user defined): t2-curve voor het brandvermogen, conform uitgangspunten van NEN-EN 1991-1-2/NB: correct
- er is geen risicobenadering in het fysisch model opgenomen (alle risicofactoren zijn 1): correct.
- als verbrandingsmodel: extended duration. Dit is pessimistisch als het gaat om de temperatuurbelasting op constructies, dus correct.
Opvallend aan de uitvoer:
- tot 29 minuten: 2-zone model, de hete zone warmt snel op, de koude zone wordt langzaam ook iets warmer.
- vanaf 29 minuten: gemengde zone model, de overgang van 2-zone naar gemengde zone model wordt veroorzaakt door flash-over. Dit verklaart ook de plotselinge toename van het brandvermogen.
- de brand is na flash-over ventilatiebeheerst. De piek van de brandstofbeheerste vermogenscurve is immers hoger dan de piek van de berekende vermogenscurve.
- de brandduur is (incl. de dooffase) circa 64 minuten. De temperatuurpiek is daarnaast van korte duur.
- de temperatuur in het geselecteerde staalprofiel (HE 140A) volgt met een geringe vertraging de gastemperatuur. Het is dus een staalprofiel met een relatief ongunstige profielfactor. Een eventuele lokale opwarming van het staalprofiel is buiten beschouwing gelaten.
- de hoogte van de interface tussen koude en hete zone is na circa 4 minuten vrijwel constant. Dit wordt veroorzaakt doordat vanaf dat moment rookafvoer vanuit de hete zone naar buiten plaatsvindt via de (bezweken) gevelopeningen.
De consequentie hiervan is dat met het fysisch brandmodel twee berekeningen moeten worden uitgevoerd:
- de berekening met de brandruimte gelijk aan het gehele brandcompartiment (zie bijlage 2)
- de berekening met de brandruimte gelijk aan een kantoorvertrek. Het maatgevende kantoorvertrek is het vertrek met de kleinste oppervlakte aan gevelopeningen, gerelateerd aan de vloeroppervlakte van het vertrek.
Ja, het brandoverslagrisico tussen de verdiepingen moet worden beschouwd. Er is immers sprake van een ventilatiebeheerste compartimentsbrand vanaf het moment van flash-over. Daarbij zullen uitslaande vlammen optreden vanuit de gevelopeningen, waardoor een brandoverslagrisico naar boven ontstaat.
De situatie van bezweken compartimentsgrenzen (vloeren) is niet goed in een zonemodel te modelleren. Toch kan wel een inschatting van het effect worden verkregen door de invoer op de volgende wijze aan te passen:
- De afmeting van de brandruimte wordt in de hoogte aangepast naar drie bouwlagen.
- De vloeroppervlakte van de brandruimte wordt drie maal zo groot aangehouden.
- De gevelopeningen worden drie maal zo groot (drie maal zo breed) aangehouden.
De laatste twee punten passen natuurlijk niet in de geometrie van de brandruimte. Dat is voor het zonemodel geen probleem, er wordt desondanks met deze aangepaste oppervlakten gerekend. Het effect van thermisch trek tussen de gevelopeningen op de onderste bouwlaag en de gevelopeningen op de bovenste bouwlagen wordt op deze wijze niet meegenomen. Dat is met opzet, aangezien bezweken verdiepingsvloeren doorgaans niet zodanig bezweken zijn dat er een grote vide ontstaat.
Wanneer de invoer op deze wijze wordt aangepast blijkt de brandduur gelijk te blijven, maar het brandvermogen en daarmee ook de gastemperatuur in de brandruimte flink toe te nemen. De thermische belasting op constructies wordt hierdoor dus aanzienlijk vergroot!
NB: In werkelijkheid zal de brandduur uiteraard wel worden verlengd, omdat de compartimentsgrenzen (vloeren) niet vanaf het moment van ontstaan van de brand bezweken zijn. Daar zal enige tijd overheen gaan.
Met de gegevens blijkt uit het programma Detactt2 (NIST, US) een lange activeringstijd te ontstaan van circa 4 minuten.
Vanaf het moment van sprinkleractivering (zie 3.6) zal de brandomvang en daarmee ook het brandvermogen in elk geval niet verder toenemen. Het vanaf dat moment constant houden van het brandvermogen is een conservatieve aanname, het koelend effect van het water wordt daarbij verwaarloosd.
Bij een gesprinklerde brand hoeft geen rekening te worden gehouden met brndoverslagrisico naar boven. Immers, door de sprinklerinstallatie blijft de brand lokaal, er treedt dus geen flash-over op. De brand blijft daardoor ook brandstofbeheerst, waardoor er geen uitslaande vlammen optreden.
Een brandwerendheidseis aan de hoofddraagconstructie is niet aan de orde. Wel kan een constructie-element dicht bij de brandhaard lokaal zodanig worden aangewarmd dat dat element zou kunnen bezwijken. Dit is toelaatbaar wanneer de extra krachtafdracht via andere constructie-elementen kan plaatsvinden en de stabiliteit van de hoofddraagconstructie gegarandeerd blijft. Als aan deze voorwaarden niet kan worden voldaan zal brandwerende bekleding onvermijdelijk zijn, tenzij het constructie-element door de sprinklerinstallatie in voldoende mate kan worden gekoeld.
Predictie en postdictie
In de meeste gevallen worden brandfysische modellen (en dus ook het fysisch brandmodel) toegepast in een ontwerpsituatie, om vervolgens het benodigde voorzieningenniveau te dimensioneren voor een brandveilige situatie. Daarbij worden brandfysische modellen vooral toegepast om een aan de bouwregelgeving gelijkwaardige veiligheidssituatie aan te tonen.
Het is echter ook mogelijk om brandfysische modellen te gebruiken om schademechanismen of veiligheidsrisico’s achteraf, wanneer er brand heeft gewoed, vast te stellen. Naast het achterhalen van het maatgevende schademechanisme kan zo ook het model beter gefit worden op de waargenomen werkelijkheid. Dergelijk postdictie-onderzoek is dan ook erg belangrijk.
Op basis van de uitgevoerde berekeningen voor de casus in hoofdstuk 2 kunnen wellicht enkele conclusies getrokken worden voor de nog recente brand die het gebouw van de faculteit Bouwkunde van de TU Delft heeft verwoest.

Figuur 1. Brand in het gebouw van de faculteit Bouwkunde van de TU Delft.
De brandweer heeft zich relatief snel uit dit gebouw moeten terugtrekken, waarna het vuur zich over een groot aantal compartimenten heeft uitgebreid. Uiteindelijk is na urenlange brand een groot deel van het gebouw uitgebrand en een deel van de hoofddraagconstructie bezweken. Deze hoofddraagconstructie was van beton, ter plaatse gestort, dus met momentvaste verbindingen.

Figuur 1. Gebouw faculteit Bouwkunde TU Delft, direct na de brand
Geef een mening over de volgende stellingen:
- De BHV heeft gefaald, omdat het beginnende brandje tijdig was ontdekt maar niet kon worden uitgemaakt.
- De brandweer heeft zich te snel uit het gebouw teruggetrokken.
- De compartimentsscheidingen hebben gefaald.
- De hoofddraagconstructie is voortijdig bezweken.
- Het gebouw was niet veilig volgens de publiekrechtelijke regelgeving
Bijlage 1
Bouwkundige lay-out brandcompartiment kantoorvleugel

Bijlage 2
Basisberekening Fysisch brandmodel





